парадокс лжеца

парадокс лжеца
        ПАРАДОКС ЛЖЕЦА — в своей древнейшей форме, восходящей к античности, предлагает рассмотреть утверждение человека о том, что он — лжец (отсюда название парадокса).
        С начала 20 в. философы и логики — желая абстрагироваться от несущественных для философского осмысления парадокса вопросов о природе обмана и ментальных актов и стремясь сосредоточится на вопросах, касающихся истины и лжи как свойств предложений языка — предпочитают следующую формулировку П. л.: [SJ Предложение [S ] ложно. (Здесь [SJ — имя предложения, напечатанного курсивом; таким образом, [S ] утверждает, что оно само — ложно.) Парадокс возникает при попытке ответить на вопрос: истинно или ложно [S ]? Если [S ] истинно, то, поскольку оно утверждает собственную ложность, оно ложно; если [SJ ложно, то, поскольку именно это оно и утверждает, оно истинно; таким образом, [SJ истинно, если, и только если, оно ложно, а значит не истинно. Важность П. л. для современной философии обусловлена тем, что — показывая, что наше интуитивное представление об истинности и ложности противоречиво — он работает как лакмусовая бумажка для теорий истинности: теории, предлагающие такое понимание истинности, которое позволяет получить парадоксы, аналогичные П. л., считаются заведомо несостоятельными.
        Первое серьезное рассмотрение П. л. было предпринято в 1930-х А. Тарским, полагавшим, что П. л. указывает на неизбежную противоречивость понятия истинности в естественных языках, обусловленную тем, что предложения естественного языка могут утверждать свою собственную истинность или ложность. Поскольку Тарского интересовало исключительно такое понятие истинности, которое могло бы использоваться для целей научного познания, он считал, что П. л. показывает, что естественные языки для этих целей неприемлемы. Соответственно, Тарский предложил методологию не приводящего к П. л. определения понятия истинности для формализованных языков (предназначенных для научного познания). Суть методологии Тарского заключается в использование не одного, а иерархии формализованных языков — последовательности языков L,, L2, L,... (и т.д.), в которой каждый последующий язык богаче предыдущих; каждый язык иерархии — в отличие от естественных языков — недостаточно богат для того, чтобы утверждать истинность или ложность своих собственных предложений (так, истинность предложений L1 может утверждаться в L2 или еще в более богатых языках), что означает, что П. л. не может быть сформулирован ни в одном из языков иерархии. Определяя истинность для языков своей иерархии, Тарский следовал классическому пониманию истинности как соответствия действительности. Благодаря популярности в 30—50-х гг. 20 в. логического позитивизма с его пренебрежением к формам познания, отличным от науки, и отчасти благодаря мощи и красоте формального аппарата, развитого Тарским для определения истинности формализованных языков, в течение долгого времени было принято считать, что Тарский удовлетворительно решил П. л. Однако закат логического позитивизма привел к переоценке работы Тарского: предложенная им методология определения понятия истинности для формальных языков, не приводящего к аналогам П. л., не имеет ничего общего с анализом исходного П. л., сформулированного в естественном языке; Тарский показал, как можно непротиворечиво определить истинность для формализованных языков, но не предложил анализа противоречивости нашего интуитивного представления об истинности предложений естественного языка.
        В 1970-х такой анализ был предложен С. Крипке, полагавшим, что классическое понимание истинности как соответствия действительности требует существенного уточнения: понятие «соответствие действительности» должно предполагать наличие внеязыковой действительности. Так, предложение «"Снег бел" истинно» истинно, ибо его истинность, в конце концов, основана на соответствии предложения «Снег бел» внеязыковой действительности, белизне снега. С другой стороны, «Это предложение истинно» нельзя считать истинным, ибо нельзя сказать, что оно соответствует внеязыковой действительности; однако его также нельзя считать ложным, ибо оно не противоречит внеязыковой действительности — оно с ней «не соприкасается». Такие предложения Крипке предложил считать не истинными и не ложными. Нетрудно увидеть, что [S ] — именно такое предложение.
        Анализ Крипке был подвергнут критике на основании того, что он, по мнению многих, не в состоянии предложить решение связанного с П. л. парадокса, известного как «усиленный парадокс лжеца» (УПЛ): рассмотрим предложение [S ] S2 не истинно. Если S2, наподобие S, не истинно и не ложно, то оно, в частности, не истинно. Но тогда оно должно быть истинно, ибо именно свою неистинность оно и утверждает, что парадоксально. На это можно ответить, что используемое в УПЛ рассуждение не имеет смысла, ибо S2 «не касается действительности», а значит определенно S2 не истинно. Но этот ответ использует как истинное предложение (выделено курсивом), которое он объявляет не истинным, что парадоксально.
        Наиболее популярные в настоящее время подходы к разрешению П. л. основаны на различении между предложениями и утверждениями. В зависимости от контекста, предложения могут выражать различные утверждения (так, «Я голоден» выражает различные утверждения, если произносится двумя разными людьми). Тогда только утверждения, а не предложения, могут считаться истинными или ложными, и в зависимости от контекста одно и то же предложение может содержать то истинное, то ложное утверждение. Также ничто не запрещает нам предполагать, что некоторые предложения, в силу семантического дефекта, не выражают никакого утверждения. Более того, предложение может в определенном контексте выражать истинное утверждение, в то время как в другом — не выражать истинного утверждения. Так, предложение «Единственное предложение, записанное на доске в аудитории 1145, не выражает истинного утверждения», записанное на доске аудитории 1145, семантически дефектно, а значит не истинно; тем не менее, если бы я произнес то же самое предложение, глядя на доску в аудитории 1145, то оно, при данном употреблении, выражало бы истинное утверждение. Аналогично, если мы используем аналог S2 так: [ S * ] S *, не выражает истинного утверждения, то оно не выражает истинного утверждения. Но если бы вместо выделенной курсивом части предыдущего предложения я использовал само S*, то оно выражало бы истинное утверждение. Очевидно, что апелляции к отсутствию связи с реальностью не могут объяснить, в чем заключается различие в использовании S*2 в двух упомянутых контекстах. Пожалуй, наиболее популярным в настоящее время является объяснение, апеллирующее к расселовскому принципу порочного круга (ни одна совокупность А не может иметь член, определимый только через А). Рассмотрим утверждение [ S *2 ] S * 2 не выражает истинного утверждения — и спросим, из каких утверждений состоит совокупность А утверждений, к которым апеллирует S *2 ? Очевидно только утверждение (обозначим его S) о том, что S*2 не выражает истинного утверждения. Но S определимо только через А, а значит S не существует. Это означает, что в У П Л S *2 не выражает никакого утверждения, в чем и заключается его семантический дефект.
        Д.П. Шкатов

Энциклопедия эпистемологии и философии науки. М.: «Канон+», РООИ «Реабилитация». . 2009.

Игры ⚽ Нужно сделать НИР?

Полезное


Смотреть что такое "парадокс лжеца" в других словарях:

  • Парадокс лжеца — Парадокс лжеца: «То, что я утверждаю сейчас  ложно», или «Я лгу», или «Данное высказывание  ложь». То есть, если это высказывание истинно, значит, исходя из его содержания, верно то, что данное высказывание  ложь; но если оно  …   Википедия

  • ЛЖЕЦА ПАРАДОКС — один из наиболее известных логических парадоксов. В простейшем его варианте человек произносит одну фразу: «Я лгу». Или: «Это высказывание ложно». Если высказывание ложно, то говорящий сказал правду и, значит, сказанное им не является ложью. Если …   Философская энциклопедия

  • Парадокс — У этого термина существуют и другие значения, см. Парадокс (значения). Роберт Бойль. Схема доказательства того, что вечного двигателя не существует Парадокс …   Википедия

  • Парадокс Карри — В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете …   Википедия

  • ПАРАДОКС — (греч. paradoxos неожиданный, странный) в широком смысле: утверждение, резко расходящееся с общепринятым, устоявшимся мнением, отрицание того, что представляется «безусловно правильным»; в более узком смысле два противоположных утверждения, для… …   Философская энциклопедия

  • ПАРАДОКС ЛОГИЧЕСКИЙ — положение, которое сначала еще не является очевидным, однако, вопреки ожиданиям, выражает истину. В античной логике парадоксом называли утверждение, многозначность которого относится прежде всего к его правильности или неправильности. В… …   Философская энциклопедия

  • Лжеца Парадокс —  Лжеца Парадокс  ♦ Menteur, Paradoxe Du    Критянин Эпименид говорил: «Все критяне – лжецы». Следовательно, его высказывание ложно, если оно истинно (если он говорил правду), и истинно, если оно ложно (если он солгал). Это один из традиционных… …   Философский словарь Спонвиля

  • лжеца парадокс — один из наиболее известных логических парадоксов. В простейшем его варианте человек произносит одну фразу: Я лгу . Или говорит: Высказывание, которое я сейчас произношу, является ложным . Или: Это высказывание ложно . Если высказывание ложно, то… …   Словарь терминов логики

  • Парадокс лысого (философия) — Евбулид (из Милета; Эвбулид, Eubulides; IV век до н. э.) древнегреческий философ идеалист, представитель мегарской школы, известен своими парадоксами или «апориями» («Лжец», «Куча», «Плешивый», «Рогатый» и др.). Содержание 1 Парадоксы (апории)… …   Википедия

  • парадокс — (греч. paradoxos) в широком смысле: утверждение, резко расходящееся с общепринятыми, устоявшимися мнениями, отрицание того, что представляется безусловно правильным ; в более узком смысле два противоположных утверждения, для каждого из которых… …   Словарь терминов логики


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»